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This work describes a numerical method for the solution of the nonlinear Vlasov 
equation. The distribution function is expanded in a series of orthogonal polynomials, 
namely the Chebyshev polynomials. The conditions under which this expansion is 
valid are discussed. Recurrence effects are eliminated by formally adding a damping 
term to the eigenvalues of the truncated system. Nonlinear effects have been simulated 
by an amount of information corresponding to less than 500 “particles.” 

I. INTRODUCTION 

The use of transform methods for the numerical solution of the nonlinear 
Vlasov equation has been discussed and reviewed in several publications [l, 21. 
One has to deal with the one-dimensional Vlasov equation 

+f(x, u, tyat + t@fpk) - E(x, t)(af/au) = 0. (1) 

Supplemented with the Poisson equation 

g = (1 - pdu). 

The units used in Eqs. (1) and (2) are the inverse plasma frequency 
0~;’ = (4m,e2/m)- 112, the thermal velocity uT = (KT/w)~/~, and the Debye length 
AD = (KT/4moe2)112. 

The expansion of the distribution function in velocity space in terms of ortho- 
gonal polynomials, namely the Hermite polynomials, has been particularly studied 
in [3], and more recently by Knorr [4], who simulated linear effects by an amount 
of information corresponding to less than 100 “particles,” nonlinear effects by 
less than 500 “particles.” This has been effected by applying a method prescribed 
in [2] to eliminate the recurrence effects, namely the addition of a real damping 
term to the eigenvalues of the truncated system. 
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The expansion of the velocity dependence of the distribution function in terms 
of Hermite polynomials has been essentially dictated by the fact that no other 
classical polynomials possess such a simple expression for their derivatives, 
although they converge slowly to the correct solution. The question thus arises 
on the possibility of using other classical orthogonal polynomials possessing a 
more rapid convergence. Since in numerical simulation one is compelled to truncate 
the velocity dependence of the distribution function at, say, v = &tv, (thus 
neglecting the very few particles with u > V, for V,,, sufficiently large), the use 
of plynomials orthogonal over a finite interval may present an attractive alternative. 
With the aid of a given finite number of these polynomials one might represent 
the distribution function with a higher accuracy in the velocity range of interest. 

It has been found that the Chebyshev polynomials are appropriate for this 
purpose. The choice of these polynomials and the derivation of the Chebyshev 
representation of the Vlasov equation will be presented in the next section, and the 
last section will present our results and conclusion. 

II. THE CHEBYSHEV REPRESENTATION 

A. The Expansion of the Distribution Function with Polynomials Orthogonal Over 
Finite Interval 

We rewrite Eq. (1) in the form 

where 5 varies in the closed interval (-1, 1) and V, is the maximum value of the 
velocity. The distribution function f(x, B, t) is expanded in the following series 

f(x, 6, t) = f b,(x, t) U,(G) w(C). 
l-0 

(4) 

The polynomials U, are to be determined; they obey the orthogonality relation 

s +l U”(6) U&) w(5) de? = a,s,u 
-1 

(5) 

where the weight function w(6) is also to be determined. 
We choose periodic boundary conditions and substitute from Eq. (4) into Eq. (3). 

Integrating over phase-space, using Eq. (5) we get 

i a w 
‘z- ""at -L/2 j- b,(x, t) dx - ; jM;;2 2 [f(x, 6, t)];Z:f: dx = 0 (6) 
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From Eq. (4) we have 

[f(x, 6, t)];zT: = f b,[U”(l) w(1) - U,(-1) w(-l)]. 
l-0 

It results that Eq. (6) can be accurately verified if and only if the sum in Eq. (7) 
is extended over a sufficiently large number of polynomials. This contradicts the 
basic aim of our present work, which is the economical simulation of the Vlasov 
equation by decreasing as much as possible the number of polynomials used. This 
contradiction can be overcome if we choose polynomials whose weight function w 
vanishes at the boundary of the interval, i.e., w( f 1) = 0. (The Jacobi, Gegenbauer, 
or Chebyshev polynomials are examples.) Among these polynomials, the Chebyshev 
polynomials of the second kind, U, , have a simple recursion relation [5] 

=w) = u/2)[~“+,@) + ~“-,m. 

In this case the weight function is w = (1 - c2)lj2 and 01, = n/2. 
The expansion in Eq. (4) is now written 

(8) 

f(x, 6, t) = f b,(x, t) U@)(l - GZ)l’2. 
“=O 

(9) 

This expansion is imposing on f(x, 6, t) a nonphysical boundary condition, 
namely that f(x, fl, t) = 0 for all time t, which is not fulfilled by the system 
in Eq. (1) and (2) since the acceleration term of the Vlasov equation can accelerate 
particles for arbitrary high velocities. However, one can, for the sake of mathe- 
matical and computational convenience, introduce some modification on the system 
of Eq. (1) and (2), without changing fundamentally the physics involved in the 
problem. In order to keep the expansion in Eq. (9) valid, one can use an acceleration 
term in Eq. (3) which vanishes at the boundary; i.e., we rewrite Eq. (3) in the form 

g+ vmcg - $& [(l - @)f] = 0. 
112 tw 

The effect of this modification is clearly to keep the distribution/equal to zero 
at the boundary d = *l, for all time t, thus legitimizing the expansion in Eq. (9). 
As it can be seen from Fig. 1, the higher the value of 4, the closer the value (1 - v2g) 
to 1 for the region where the distribution function is appreciably different from 
zero, and hence the closer is Eq. (10) to the Vlasov equation given in Eq. (3). 

We now ask what conservation laws does the newly derived system verify. 
Integrating Eq. (10) over phase space, we can easily verify that the number of 
particles is conserved. Momentum and energy are not conserved by Eq. (10); 
however, as we previously mentioned, the higher the value of q, the closer is the 
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FIG. 1. (a) Plot of the curves (1 - 6”“) against G for q = 1,2, 3. (b) Plot of the distribution 
function f = (1/(2419CaV,a cllaeav 111’ against B for V, = 5.0. 

quantity (1 - G9) to 1 in the region where the distribution function is appreciably 
different from zero (see Fig. 1) and hence, the closer the moments of Eq. (10) 
to the moments of the Vlasov equation. 

B. The Truncation of the Injinite Matrix 

We have represented the v-dependence of the distribution function by a series 
of Chebyshev polynomials in Eq. (9). We set E = 0 for the moment and substitute 
from Eq. (9) in Eq. (lo), we get 

(11) 

When the i&rite system in Eq. (11) is truncated by setting b&x, t) = 0, the con- 
tinuous eigenvalue spectrum of this system is replaced by the set of discrete finite 
eigenvalues of the truncated system. This can be easily seen by setting 

b,(x, t) = b, exp(ikx + At) (12) 
in Eq. (11). We get 

iA2b,/kV, = b,+l + bvPl . (13) 

This is the recursion relation for the Chebyshev polynomials. Thus for b, we 
have the solution 

b, = U,(iA/kV,). (14) 
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The system is finite if bN = 0, i.e., 

U,(iA/kV,) = 0 or (1, = -(ikV,) Z,N a = 1, 2,..., N (15) 

where ZaN is the c&h root of the Chebyshev polynomial UN . Substitute by the 
previous results in Eq. (9), we get 

f = 5 2 a,Uv(ZaN) U,(c)(l - 3)1/2 exp(ikx - ikV,ZaNt) 
l-0 Lx=0 

(16) 

where the constants a, are to be determined from the initial value of J Clearly, 
the results in Eq. (16), calculated for a truncated system, represent an almost 
periodic function in time. 

C. The Addition of Damping 

In order to make the solution of the truncated system more similar to the true 
solution, a remedy was suggested in [2] which consists of adding a real part to 
the eigenvalues calculated in Eq. (15). This corresponds physically to the presence 
of dissipative terms on the right-hand side of Eq. (ll), such as a “collision term,” 
for example. The study of such term for Hermite polynomials expansion has been 
given by Knorr and Shoucri [a]. In order to get the same effects using the Chebyshev 
polynomials, we follow the same steps as in [6] and look for a “collision” operator 
C such that 

C( U”( 1 - 3)l’“) = a,U,(l - bS)ll2. (17) 

It is straightforward to verify that for the operator C defined by 

one has 
c z (1 - az)(P/a$) - a(+%) + 1 (18) 

C(U”(1 - 62)1/2) = -Y(V + 2) U”(1 - q/2. (19) 

More generally, one has 

C2'fl(U"(l - 52)1/2) = -[v(v + 2)]2’+1 U”(1 - zz)1’2. (20) 

Accordingly, Eq. (10) is modified to 

g + $-jJr, g - $ ; [(I - W)f] = 7j $ P-+l(f). 
m (21) 

7 is a constant. The operator a2/ax2 helps make the Fourier modes having the 
highest k value (and hence, the lowest recurrence time, since the recurrence time 
T N N/k) be damped selectively. 
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We make use of Eq. (21) to damp the filamentation of the Vlasov equation. 
Having determined the “collision” operator C as given in Eq. (18), it is interesting 

to determine the “equilibrium” distribution towards which C drives the distribution 
function, i.e., we are looking for the distribution& such that 

From Eq. (20), it results immediately that for v = 0, we have U, = 1 and 

hence, 
CK1 - qw) = 0, (23) 

fo = (1 - 62)1/2. (24) 

III. THE FINITE DIFFERENCE SCHEME 

The system in Eq. (11) is hyperbolic and it is more advantageous in this case to 
use for the numerical calculation a leapfrog scheme, as pointed out by Knorr [4]. 
The stability of the leapfrog scheme is investigated following the same steps as 
in [4] and leads to the stability condition: 

&/Ax < 1 h, I-1 (25) 

where A, is the largest root of the Chebyshev polynomial UN , which is always less 
than one. 

The difference scheme for the dissipation term on the right-hand side of Eq. (21) 
has been calculated using a Dufort-Frankel scheme, to increase the stability of 
the system. 

The two level leapfrog scheme has been initialized using a two-level Lax- 
Wendroff scheme, which accomplished an initialization of second order in At. 
The Lax-Wendroff scheme has been also used to initialize the leapfrog scheme 
continuously after a number of time steps, to prevent the two levels of the leapfrog 
scheme from drifting apart, in the same way it has been discussed by Knorr [4]. 
In the present results, the Lax-Wendroff initialization was repeated every 40 time 
steps. 

IV. RESULTS AND CONCLUSIONS 

The example of the symmetric two-stream instability has been studied with the 
initial condition 

f(x, v, 0) = (l/(271)9 v2 exp(-(l/2) v2)(1 + A cos kx) 
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with A = 0.1 and k = l/2. (We have subtracted fromf(x, v, 0) the quantity 

fM = (1/(2n)lj2) Vm2 exp(-(l/2) Vm2)(l + A cos kx) 

in order to have a distribution which is zero at u = I’,>. A typical solution is given 
in Figs. 2a and b, which has been calculated by setting q = 3 in Eq. (21). Figure 2a 
gives the magnitude of the first two modes as a function of time. In Fig. 2b the 
total electric energy is plotted linearly in time. It follows the characteristic expo- 
nential growth, saturation, and oscillations of the electric field due to the trapping 
of the particles. These plots have the physical features of those reported in Figs. 4a 
and b of Ref. [4], and have been obtained with the equivalent of 480 particles. 
The damping reported on the right-hand side of Eq. (21) has been applied only 
to the last 13 coefficients, out of a matrix of 30 (for the other terms, the 
damping was too small and could be neglected). The curves in Figs. 2a and b 
correspond to 77 = 5 and r = 2. 

At this point, a comparison between the respective accuracies of the Chebyshev 
polynomials and the Hermite polynomials representation is necessary. One can 
define the accuracy of a polynomial representation as being the maximum distance 
between two consecutive zeroes of the polynomial, which characterizes the 
“resolution” one can get with this representation. For the Hermite polynomials 

hence, the distance between two consecutive zeros 

AvH = ~/nlH/~. 

The mth zero of the Chebyshev polynomial U*, is given by [5] 

X2' - cosm/(n, + 1)~. 

In our case, the distance between two consecutive zeroes of a Chebyshev poly- 
nomial is given by 

Au, = 7rV,/n, + 1. 

An equal accuracy of the two representations is attained if 

hence, 

4~ = Au, ; 

z-V&t, + 1) = 7r/nlH/2. 
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FIG. 2. Plot of the total electric field energy for a two-stream instability with the initial con- 
dition f(x, u, 0) = (lj(27r)1~z) v2 e-l/avs (1 + A cos kx) with A = 0.1 and k = l/2. These results 
are calculated for q = 3, 7 = 5.0 and r = 2. 
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The point of equal computational effort (i.e., requiring the same number of 
polynomials in both representation) is given by n, = nH = n, hence, 

i.e., if V, = 5 (which is the case in our present calculation), then it is more 
advantageous to take Hermite polynomials if less than 25 polynomials are to be 
used. If more than 25 polynomials are to be used, then it is more advantageous 
to use Chebyshev polynomials (the results presented in this paper use 30 Chebyshev 
polynomials). 
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